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Abstract. We argue that the masses of the first and third fermionic generations, which are respectively of
the order of a few MeV up to a hundred GeV, originate from a dynamical symmetry breaking mechanism
leading to masses of the order αµ, where α is a small coupling constant, and µ, in the case of the first
fermionic generation, is the scale of the dynamical quark mass (≈ 250 MeV). For the third fermion
generation µ is the value of the dynamical techniquark mass (≈ 250 GeV). We discuss how this possibility
can be implemented in a technicolor scenario, and how the mass of the intermediate generation is generated.

1 Introduction

The standard model is in excellent agreement with the
experimental data. The only part of the model that is
still obscure is the one responsible for the mass genera-
tion, i.e. the Higgs mechanism. In order to make the mass
generation mechanism more natural there are several alter-
natives, where the most popular ones are supersymmetry
and technicolor. In the first one the mass generation occurs
through the existence of non-trivial vacuum expectation
values of fundamental scalar bosons, while in the second
case the bosons responsible for the breaking of gauge and
chiral symmetry are composite.

Up to now the fermionic mass spectrum is the strongest
hint that we have in order to unravel the symmetry break-
ing mechanism. A simple and interesting way to describe
the fermionic mass spectrum is to suppose that the mech-
anism behind mass generation is able to produce a non-
diagonal mass matrix with the Fritzsch texture [1]

Mf =


 0 A 0
A∗ 0 B

0 B∗ C


 . (1)

This matrix is similar for the charged leptons, 1/3 and
2/3 charged quarks. The entry C is proportional to the
mass of the third generation fermion, while the entry A is
proportional to the mass of the lighter first generation. The
diagonalization of such a mass matrix will determine the
CKM mixing angles and the resulting diagonal mass matrix
should reproduce the observed current fermion masses.

There are other possible patterns for the mass matrix
and we choose the one of (1) just for simplicity. We call
attention to the values of A and C. They must be of order
of a few MeV and a hundred GeV, respectively. In models
with a fundamental Higgs boson the values of A and C

are obtained due to adjusted vacuum expectation values
(VEVs) or Yukawa couplings. In this way there is no nat-
ural explanation for the values of A and C; they appear
just as an ad hoc choice of couplings!

The question that we would like to discuss here is how
we naturally can generate the scales A and C. In order
to do so let us recall which are the mass scales in the
standard model. In this model we have basically two nat-
ural mass scales: µQCD ≈ 250 MeV, which is the quantum
chromodynamics (QCD) dynamical quark mass scale, and
v ≈ 250 GeV, the vacuum expectation value of the fun-
damental Higgs field responsible for the gauge symmetry
breaking. As QCD is already an example of a theory with
dynamical symmetry breaking we will also assume that
technicolor (TC) models provide a more natural way to
explain the gauge symmetry breaking [2, 3], i.e. at this
level all the symmetry breaking mechanisms should be dy-
namical. Therefore we will not discuss a fundamental scalar
field with VEV v but a composite scalar field characterized
by µTC ≈ 250 GeV, which is the scale of the dynamical
techniquark mass. Of course, at very high energies we pos-
sibly have other natural mass scales as the Planck one, the
grand unified theory (GUT) scale MGUT or the horizontal
(family) symmetry mass scale Mh, although it is far from
clear how such scales interfere with the values of A and
C. Finally, in TC models we may also have the extended
technicolor (ETC) mass scale METC [4] upon which no
constraint can be established above the 1 TeV scale [5]. In
this work we will build a model where the scales A and
C of (1) can be related respectively to the scales µQCD
and µTC times some small coupling constant. The values
of (1) will depend as little as possible on the very high
energy mass scales like MGUT, METC, etc. The model will
require a very peculiar dynamics for the TC theory as well
as for QCD, and in this peculiarity in what concerns QCD
the present approach differs from any other one that may
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be found in the literature. In the next section we discuss
which the dynamics is of non-Abelian theories that will lead
to the desired relation between A(C) and µQCD(µTC). In
Sect. 3 we introduce a model assuming that its strongly
interacting sector has the properties described in the pre-
vious section and show that the intermediate mass scale
(B) of (1) appears naturally in such a scheme. In Sect. 4
we compute the fermion mass matrix. Section 5 contains
some brief comments about the pseudo-Goldstone bosons
that appear in our model, and we draw our conclusions in
the last section.

2 The self-energy of quarks and techniquarks

In TC models the ordinary fermion mass is generated
through the diagram shown in Fig. 1. In Fig. 1 the bo-
son indicated by SU(k) corresponds to the exchange of a
non-Abelian boson, with coupling αk to fermions (f) or
technifermions (T ). In the models found in the literature
the role of the SU(k) group is performed by the extended
technicolor group and the boson mass is given by METC.
To perform the calculation of Fig. 1 we can use the fol-
lowing general expression for the techniquark (or quark)
self-energy [6]:

Σ(p)g = µ

(
µ2

p2

)θ
[1 + bg2

TC(QCD)(µ
2) ln(p2/µ2)],−γcos(θπ)

(2)
where in the last equation we identified γ = γTC(QCD) as
the canonical anomalous dimension of the TC(QCD) mass
operator, and µ is the dynamical fermion (TC or QCD)
mass. The advantage of using such an expression is that
it interpolates between the extreme possibilities for the
technifermion (or quark) self-energy, i.e. when θ = 1 we
have the soft self-energy given by

Σs(p) =
µ3

p2 [1 + bg2
TC(QCD)(µ

2) ln(p2/µ2)]γ , (3)

which is the one obtained when the composite operator
〈ψ̄iψi〉 ≡ µ3

i has canonical dimension and where i can
indicate TC or QCD. When θ = 0 operators of higher
dimension may lead to the hard self-energy expression

Σh(p) = µ[1 + bg2
TC(QCD)(µ

2) ln(p2/µ2)]−γ , (4)

where γ must be larger than 1/2 and the self-energy be-
haves like a bare mass [7]. Therefore, no matter if the

αk αkTf, f Tf f,f f

SU(k)

Fig. 1. Typical diagram contributing to the fermion masses
of the first and third generation. The exchange of the boson
indicated by SU(k) plays the same role of an extended techni-
color boson

dimensionality of the operators is responsible for the mass
generation in technicolor theories, the self-energy can al-
ways be described by (2). In the above equations gTC(QCD)
is the technicolor (QCD) coupling constant and γ =
3cTC(QCD)

16π2b , where

cTC(QCD) =
1
2
[C2(R1) + C2(R2) − C2(Rψψ)],

with the quadratic Casimir operators C2(R1) and C2(R2)
associated to the R.H and L.H fermionic representations
of the technicolor (QCD) group, and C2(Rψψ) is related
to the condensate representation. b is the g3

TC(QCD) coeffi-
cient of the technicolor (QCD) group β function. The com-
plete equation for the dynamical fermion mass displayed
in Fig. 1 is

smf = ak

∫
dq4

(
µ2

q2

)θ
(5)

×
g2
k(q)

[
1 + bTC(QCD)g

2
TC(QCD) ln

(
q2

µ2

)]−δ

(q2 +M2
k )(q2 + µ2

TC(QCD))
,

where we define ak = 3C2kµTC(QCD)

16π4 .
In the last equation C2k is the Casimir operator related

to the fermionic representations of the SU(k) (or ETC)
group connecting the different fermions (TC or QCD), gk
and Mk are the respective coupling constant and gauge
boson mass, a factor µTC(QCD) remained in the fermion
propagator as a natural infrared regulator and δ = γcos θπ,
g2
k(q) is assumed to be given by

g2
k(q

2) � g2
k(M

2
k )(

1 + bkg2
k(M

2
k ) ln

(
q2

M2
k

)) . (6)

Note that in (5) we have two terms of the form [1+big2
i ln q2]

where the index i can be related to TC(QCD) or SU(k). To
obtain an analytical formula for the fermion mass we will
consider the substitution q2 → xM2

k

µ2
i

, and we will assume
that bkg2

k(Mk) ≈ bTC(QCD)g
2
TC(QCD)(Mk), which will sim-

plify considerably the calculation. Knowing that the SU(k)
group usually is larger than the TC(QCD) one, we numer-
ically computed the error in this approximation for a few
examples found in the literature. The resulting expression
for mf will be overestimated by a factor 1.1–1.3 and is
given by

mf � 3C2kg
2
k(Mk)µ

16π2

(
µ2

M2
k

)θ

×
[
1 + bTC(QCD)g

2
TC(QCD) ln

M2
k

µ2

]−δ
I , (7)

where

I =
1

Γ (σ)

∫ ∞

0
dσσε−1e−σ 1

θ + ρσ
,
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with ρ=bTC(QCD)g
2
TC(QCD)(Mk) and ε=δ+1=γcos θπ+1.

To obtain (7) we made use of the following Mellin trans-
form:[

1 + κ ln
x

µ2

]−ε
=

1
Γ (ε)

∫ ∞

0
dσ e−σ

(
x

µ2

)−σκ
σε−1 . (8)

Finally, we obtain

mf � 3C2kg
2
k(METC)µ
16π2

(
µ2

M2
ETC

)θ
F (cos θπ, γ, ρ) , (9)

where

F (cos θπ, γ, ρ)

= Γ

(
−γ cos(θπ),

θ

ρ

)
exp

(
θ

ρ

)
1
ρ

(
θ

ρ

)γ cos(θπ)

×
[
1 + bTC(QCD)g

2
TC(QCD) ln

M2
k

µ2

]−γcos(θπ)

.

Simple inspection of the above equations shows that
θ = 0 leads us to the relation that we are looking for i.e.

C ∝ g2
kµTC , (10)

which gives masses of O(GeV). If the SU(k) (or ETC)
bosons connect quarks to other ordinary fermions we
also have

A ∝ g2
kµQCD , (11)

which are masses of a few MeV. To obtain (10) and (11)
we neglected the logarithmic term that appears in (9). In
principle there is no problem to assume the existence of
a TC dynamical self-energy with θ = 0. There are TC
models where it has been assumed that the self-energy is
dominated by higher order interactions that are relevant
at or above the TC scale, leading naturally to a very hard
dynamics [8,9]. The existence of a hard self-energy in QCD
is the unusual ingredient that we are introducing here.
Usually it is assumed that such a solution is not allowed due
to a standard operator product expansion (OPE) argument
[10]. This argument does not hold if there are higher order
interactions in the theory or a non-trivial fixed point of the
QCD (or TC) β function [11]. There are many pros and
cons in this problem which we will not repeat here [12],
but we just argue that several recent calculations of the
infrared QCD (or any non-Abelian theory) are showing the
existence of an IR fixed point [13] and the existence of a
gluon (or technigluon) mass scale which naturally leads to
an IR fixed point [14]. The existence of such a mass scale
seems to modify the structure of chiral symmetry breaking
[15]. This fact is not the only one that may lead to a failure
of the standard OPE argument. For instance, the effect of
dimension two gluon condensates, if they exist [16], can also
modify the dynamics of chiral symmetry breaking and this
possibility has not been investigated up to now. Therefore
it seems that we still do not have a full understanding of the
IR behavior of the non-Abelian theories, which can modify
the behavior of the self-energies that we are dealing with.

According to this we will just assume that such behavior
can occur in TC as well as in QCD. In how far this is a
bad or good assumption will certainly be reflected in the
fermionic spectrum that we shall obtain. Finally, this is our
only working hypothesis and will lead us to the following
problem: How can we prevent the coupling of the first
and second fermionic generations to the technifermions?
A model along this line is proposed in the next section.

3 The model

3.1 The fermionic content and couplings

According to the dynamics that we proposed in the pre-
vious section, which consists in a self-energy with θ = 0
in (2), and as the different fermion masses will be gen-
erated due to the interaction with different strong forces,
we must introduce a horizontal (or family) symmetry to
prevent the first and second generation ordinary fermions
to couple to technifermions at leading order. The lighter
generations will couple only to the QCD condensate or
only at higher loop order in the case of the TC conden-
sate. Using the hard expression for the self-energy (4) the
fermion masses will depend only logarithmically on the
masses of the gauge bosons connecting ordinary fermions
to technifermions. Therefore we may choose a scale for
these interactions of the order of a GUT scale, without the
introduction of large changes in the value of the fermion
masses. We stress again that the only hypothesis intro-
duced up to now is the dynamics described in the previous
section. On the other hand, as we shall see in the sequence,
we will substitute the needed extended technicolor group
by the existence of a quite expected unified theory con-
taining TC and the standard model (SM) at a GUT scale.

There is also another advantage in our scheme. It will be
quite independent of the physics at this “unification” scale
and will require only a symmetry (horizontal) preventing
the leading order coupling of the light fermion generations
to technifermions. Finally, the horizontal symmetry will be
a local one, although we expect that a global symmetry will
also lead to the same results. We consider a unified theory
based on the SU(9) gauge group, containing a SU(4)TC TC
group (stronger than QCD) and the standard model, with
the following anomaly free fermionic representations [17]:

5 ⊗ [9, 8] ⊕ 1 ⊗ [9, 2] , (12)

where the [8] and [2] are antisymmetric under SU(9).
Therefore the fermionic content of these representations
can be decomposed according to the group product
SU(4)TC ⊗ SU(5)GG (SU(5)GG is the standard Georgi–
Glashow GUT [18]) as follows:

[9,2]

(1, 10) =




0 ūiB −ūiY −uiR −diR
−ūiB 0 ūiR −uiY −diY
ūiY −ūiR 0 −uiB −diB
uiR uiY uiB 0 ēi
diR diY diB −ēi 0


 ,
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(4, 5) =




QiR
QiY
QiB
L̄i
N̄i




TC

, (6̄, 1) = Ni,

[9,8]

(1, 5̄) =




d̄iR
d̄iY
d̄iB
ei
νei


 , (1, 5̄) =




X̄Rk

X̄Yk

X̄Bk

Ek
NEk



i

,

(4̄, 1) = Q̄iε, Li, NiL,

where ε = 1, . . . , 3 is a color index and k = 1, . . . , 4 indi-
cates the generation number of exotic fermions that must
be introduced in order to render the model anomaly free.
These fermions will acquire masses of the order of the grand
unified scale. We are also indicating a generation (or hor-
izontal) index i = 1, . . . , 3, that will appear due to the
necessary replication of families associated to a SU(3)H
horizontal group.

This model is a variation of a model proposed by one
of us many years ago [19]. The mass matrix of (1) will be
formed according to the representations of the strongly in-
teracting fermions of the theory under the SU(3)H group.
The technifermions form a quartet under SU(4)TC and
the quarks are triplets of QCD. The technicolor and color
condensates will be formed at the scales µTC and µQCD in
the most attractive channel (MAC) [20] of the products
4̄ ⊗ 4 and 3̄ ⊗ 3 of each strongly interacting theory. We
assign the horizontal quantum numbers to technifermions
and quarks such that these same products can be decom-
posed in the following representations of SU(3)H : 6 in the
case of the technicolor condensate, and 3 in the case of the
QCD condensate. For this it is enough that the standard
left-handed (right-handed) fermions transform as triplets
(antitriplets) under SU(3)H , assuming that the TC and
QCD condensates are formed in the 6 and in the 3 of the
SU(3)H group. This is consistent with the MAC hypoth-
esis [20] although a complete analysis of this problem is
out of the scope of this work.

The above choice for the condensation channels is cru-
cial for our model, because the TC condensate in the repre-
sentation 6 (of SU(3)H) will interact only with the third
fermionic generation while the 3 (the QCD condensate)
will interact only with the first generation. In this way we
can generate the coefficients C and A, respectively, of (1),
because when we add these condensates (VEVs) and write
them as a 3×3 matrix we will end up (at leading order) with

Mf =


 0 A 0
A∗ 0 0
0 0 C


 . (13)

This problem is very similar to the one proposed by Bere-
zhiani and Gelmini et al. [21] where the VEVs of the fun-
damental scalars are substituted by condensates. The new

SU(9)

ui

Qi

di

SU(3)

Qi

di

iL

SU(9)

di

Ni

SU(9)

iL
ui

SU(9)

ei

Qi

SU(9)

ui

ui

SU(5)

ui

di

SU(5)

di

ei

SU(5)

di

di

SU(3)

ui

ui

SU(3)

ei

iL

SU(3)

Fig. 2. Couplings of ordinary fermions and technifermions to
the gauge bosons of SU(9), SU(5)GG and SU(3)H which are
relevant for the generation of fermion masses

couplings generated by the unified SU(9) group and by the
horizontal symmetry SU(3)H are shown in Fig. 2. With the
couplings shown in Fig. 2 we can determine the diagrams
that are going to contribute to the 2/3 and 1/3 charged
quark masses as well as to the charged lepton masses. These
diagrams are respectively shown in Fig. 3 to 5. It is impor-
tant to observe the following in the above figures: The
second generation fermions obtain masses only at the two
loop order. This mass will be proportional to µTC times two
small couplings (gh and g9; respectively the SU(3)H and
SU(9) coupling constants). It will also be non-diagonal in
the SU(3)H indices. The first generation fermions obtain
masses only due to the QCD condensate whereas the third
generation ones couple directly to the TC condensates. Due
to the particular choice of representations under the uni-
fied theory containing TC and the standard model we end
up with more than one mass diagram for several fermions.
This is particularly interesting: the way the fermions of the
first generation obtain masses. In some of the diagrams of
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L tQ t tQ (c) L

SU(9)

t

SU(9)

u d u u,du ,

SU(5)

(a) u c

SU(3)H

uc

c Q t cQt

SU(9)

SU(3)H

c L Lt t

SU(3)

c

H

SU(9)

(b)

Fig. 3. Diagrams contributing to the charge 2/3 quark masses.
In (a) we indicate by SU(5) the exchange of a boson that
belongs to the SU(9) group, but that would also appear in the
minimal SU(5) GUT

ddu
(d)

ud

SU(5)

sd s

SU(3)
H

sL sb N, b,N (e)

SU(9)

SU(3)
H

s L

SU(3)

H

H

SU(3)

b Q bQs

L N N, L,b b

SU(9)

(f)

SU(3) H

bQ Qb

Fig. 4. Diagrams contributing to the mass generation of 1/3
charged quarks

ede d
(g)

SU(5)

µQτ

SU(9)

µ Q τ

SU(3)H

(h)
µ Lτ

SU(3)

SU(3)

H

H

L τ µ

τQ Q

SU(9)

(i) τ τL

SU(3)H

Lτ

Fig. 5. Diagrams contributing to lepton masses

the above figures we show a boson that is indicated by
SU(5). This boson belongs to the SU(9) group but would
also appear in the standard SU(5)GG GUT. For example,
the electron only couples to the d quark (and to the QCD
condensate) through a SU(5)GG gauge boson existent in
the Georgi–Glashow minimal GUT, whereas the u and d
can connect to the second generation through the horizon-
tal symmetry gauge bosons. We also expect other diagrams
at higher order in gh and/or g9 that are not drawn in these
figures.

3.2 The composite Higgs system

We can also observe that the second generation fermions
will be massive, not by looking at the diagrams of Fig. 3
to 5, but studying the composite Higgs system. By this we
mean that the QCD and TC condensates act as if we had
two composite bosons represented by the fields η and ϕ. In
principle this system could be described by the following
effective potential:

V (η, ϕ) = µ2
ηη

†η + λη(η†η)2 + µ2
ϕϕ

†ϕ+ λϕ(ϕ†ϕ)2 , (14)

in such a way that we can identify the VEVs (given by the
ratio of masses and couplings):

v2
η = −µ2

η

λη
, v2

ϕ = −µ2
ϕ

λϕ
, (15)

to the QCD and TC vacuum condensates. The bosons rep-
resented by η and ϕ, respectively, are related to the system
of composite Higgs bosons formed in the representations 3
and 6 of the horizontal group. Such a supposition is quite
plausible if we consider the results of [8, 9], where it was
shown that the interactions of a composite Higgs boson is
very similar to the ones of a fundamental boson. Our inten-
tion is to show that such a system leads to an intermediate
mass scale and to a mass matrix identical to (1).

The VEVs of QCD and technicolor, due to the horizon-
tal symmetry, can be written respectively in the following
form [21]:

〈η〉 ∼

 0

0
vη


 , 〈ϕ〉 ∼


0 0 0

0 0 0
0 0 vϕ


 , (16)

and will be of the order of 250 MeV and 250 GeV. It is
instructive at this point to observe what fermionic mass
matrix we can obtain with the VEVs of (16). We can
assume that the composite scalars η and ϕ have ordinary
Yukawa couplings [1,21] to the fermions described by the
following effective Yukawa lagrangian:

LY = aΨ̄ iLλη
k
λU

j
Rεijk + bΨ̄ iLλϕ

ijU jR , (17)

where Ψ and U are the ordinary fermion fields. λ is a weak
hypercharge (SU(2)w) index, for instance, λ = 1 represents
charge 2/3 quarks and λ = 2 corresponds to the charge 1/3
quarks; i, j and k indicate the components of the composite
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W+

W−

gw
2 gw

2

ϕη

η ϕ

W+W+

W−gw
2 gw

2

W− gw
2gw

2η

. . . 

ϕ ϕ

η

+

Fig. 6. Higher order corrections coupling the η and ϕ composite
bosons

scalar bosons of the representations 3 and 6 of SU(3)H ,
and a and b are the coupling constants. Substituting the
VEVs of (16) in the Yukawa lagrangian for the charge 2/3
quarks, we obtain

LY = ac̄LvηuR − aūLvηcR + bt̄LvϕtR , (18)

leading to a mass matrix in the (u , c , t) basis which is
given by

m
2
3 =


 0 −avη 0
avη 0 0
0 0 bvϕ


 . (19)

The main point of the model is that the fermions of the
third generation obtain large masses because they couple
directly to the technifermions, while the ones of the first
generation obtain masses originating from the ordinary
condensation of QCD quarks. Having this picture in mind
we can now see that the most general VEV for this system
includes the mass generation for the intermediate family.

It is important to verify that there is no way to prevent
the coupling at higher order of the different composite
scalar bosons with SU(3)H quantum numbers. Examples
of such couplings are shown in Fig. 6.

The diagrams of Fig. 6 will produce new terms for the
effective potential of our composite system; therefore we
must add to (14) the following terms:

V2(η, ϕ) = Πη†ηϕ†ϕ+ δη†ϕηϕ† + . . . (20)

The introduction of this expression in the potential of (14)
will shift the VEVs generated by the effective fields η and
ϕ, and the VEV associated to the field η will be shifted to

〈η〉 ∼

 ε

0
vη


 . (21)

We do not include the shift in the VEV of ϕ, because
vη � vϕ, and the modification is negligible. Note that the
Yukawa lagrangian that we discussed in (18) in terms of
the new VEVs can be written as

LY = ac̄LvηuR − aūLvηcR + bt̄LvϕtR − ac̄LεtR + at̄LεcR .
(22)

Therefore, in the (u , c , t) basis, the structure of the mass
matrix now is

m
2
3 =


 0 −avη 0
avη 0 aε

0 −aε bvϕ


 . (23)

W

W

χ

χ

Fig. 7. Diagram leading to the coupling between two composite
scalar bosons and two gauge bosons

g
W

W

Σ
2Μ

Fig. 8. Vertex coupling a scalar composite boson to ordinary
fermions

This example was motivated by a system of fundamental
Higgs bosons [21]. But the most remarkable fact is that we
can reproduce this result with a composite system formed
by the effective low energy theories coming from QCD and
TC as we shall see in the following. The coefficient ε in (21)
will result from the minimization of the full potential

V (η, ϕ) = µ2
ηη

†η + λη(η†η)2 + µ2
ϕϕ

†ϕ (24)

+λϕ(ϕ†ϕ)2 +Πη†ηϕ†ϕ+ δη†ϕηϕ†.

This coefficient can be calculated if we assume that 〈η〉 is
given by (21), 〈ϕ〉 is the same VEV as described by (16),
and both are related to the TC and QCD condensates. We
will neglect δ compared to Π in (20), which is reasonable
if we look at Fig. 6 (Π is given by the first diagram). The
coupling Π is computed from the first diagram of Fig. 6
using the effective vertex χχWW shown in Fig. 7, where
an ordinary fermion runs in the loop, where the χ field may
indicate technicolor (χ = η) or QCD (χ = ϕ) composite
scalar bosons. To compute Fig. 7 we also need the effective
coupling between the composite scalars boson and the or-
dinary fermions. This one has been calculated in the work
of Carpenter et al. [8,9] some years ago and it is shown in
Fig. 8. After a series of steps the calculation of the diagram
of Fig. 7 will be given by

ΠχχWW ∼ −g4
W δ

ab

M2
W

gµν

32π2

∫
dq2

Σ2
χ

q2
. (25)

Following closely the procedure adopted by Carpenter et al.
[9] we may approximate the self-energy by Σχ ∼µχ

(
q2

µ2
χ

)
−ς,

where ςχ = 3C2χg
2
χ

16π2 , to obtain the following coupling be-
tween two composite scalars and the intermediate gauge
bosons of the weak interaction

ΠχχWW ∼ −M2
W δ

ab

2π2

G2
Fµ

2
χ

ςχ
gµν . (26)
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In (26) we made use of the relation GF√
2

= g2W
8M2

W
. Note that

the coupling between scalars and gauge bosons is domi-
nated by the ultraviolet limit, where the approximation
for the self-energy discussed above is also valid. The effec-
tive coupling Π in (24) is equivalent to the calculation of
the first diagram of Fig. 6. Using (26) we will come to the
following expression:

Πηηϕϕ =
M4
WG

4
Fµ

2
TCµ

2
QCD

32π8ςTCςQCD
. (27)

We can now approximately determine the value of ε
assuming that the potential of (14) has a minimum de-
scribed by the VEVs 〈ϕ〉, (16), and 〈η〉, (21), which leads
us to the following value of the potential at the minimum:

V (η, ϕ)|min = µ2
ηv

2
η + ληv

4
η + µ2

ϕv
2
ϕ + λϕv

4
ϕ + ληε

4 . (28)

We then compare the minimum of this potential with the
one obtained from (24), where the term proportional to
δ is neglected in comparison to the one proportional to
Π. This is equivalent to saying that the second diagram
of Fig. 6 is much smaller then the first diagram, and the
VEVs entering in (24) are the unperturbed ones because
the perturbation will enter through theΠ term. Finally, as-
suming that the coefficient describing the coupling between
four scalar bosons that are formed in the chiral symmetry
breaking of QCD is given by [9] we have

λη =
G2

Fµ
4
QCDcQCDαQCD

π
, (29)

and we can obtain a similar expression for λϕ after ex-
changing the indices QCD and TC. Equalizing vη and
vϕ to the known QCD and TC condensates (assuming
〈ψ̄iψi〉 = v3 ≈ µ3

i [22]), we conclude that

ε ∼ B ∼
(
M4
WG

2
Fµ

4
TC

18π3cTCαTC

) 1
4

GeV ∼ 16.8 GeV . (30)

The surprising fact in this calculation is that the cou-
pling of the different scalar bosons has been determined
dynamically and gives exactly the expected value for the
non-diagonal coefficient B.

In models with fundamental scalar bosons this value
results from one ad hoc choice. In this section we presented
our model, determined the main diagrams contributing to
the fermion masses and showed that this scenario naturally
leads to a fermion mass matrix with the Fritzsch texture.
We have not tested many other models, but it seems that
we may have a full class of models along the line that we
are proposing here. Because of the peculiar dynamics that
we are assuming we need only a horizontal symmetry and
a partial unification of the standard model and the value of
their mass scales will not strongly modify our predictions
(although the chosen horizontal symmetry will). Of course,
the breaking of the unified and/or horizontal symmetry
will happen at a very high energy scale and will not be
discussed here. In particular, this symmetry breaking can
be even promoted by fundamental scalars which naturally
can appear near the Planck scale.

4 Computing the mass matrix

We can now compute the mass matrix. Let us first consider
only the 2

3 charged quarks and verify their different con-
tributions to the matrix in (1). These will come from the
diagrams labeled (a), (b) and (c) in Fig. 3 and are equal to

A =
µQCD

10cQCDαQCD

[
1 + bg2

QCD ln
M2

5

µ2
QCD

]−γQCD+1

+
4µQCD

135cQCDαQCD

[
1 + bg2

QCD ln
M2
h

µ2
QCD

]−γQCD+1

,

B =
28µTC

675πcTCαTC

[
1 + bg2

TC ln
M2

9

µ2
TC

]−γTC+1

,

C =
2µTC

15cTCαTC

[
1 + bg2

TC ln
M2

9

µ2
TC

]−γTC+1

. (31)

Here the contributions for A, B and C come respectively
from the diagrams (a), (b) and (c) displayed in Fig. 3. The
values A, B and C correspond to the non-diagonal masses
in the horizontal symmetry basis. To come to these values
we assumed αk (= α9 = αh = α5) ∼ 1

45 at the unification
scale. We also assumed, when computing diagrams involv-
ing the technileptons and techniquarks condensates, the
following relation:

〈L̄L〉 =
1
3
〈Q̄Q〉 , (32)

because the techniquarks carry also the three color degrees
of freedom. As the mass matrix is the same as obtained
in [1] we can use the same diagonalization procedure to
obtain the t, c and u quark masses, which is given by

M
2
3
fDiag

= R−1M
2
3
f R , (33)

where R is the rotation matrix described in [1]. After di-
agonalization we obtain

mu ∼ | A |2
| B |2 | C | , mc ∼ | B |2

| C | and mt ∼| C | ,
(34)

where the values of A, B and C are the ones shown in (31).
We will also assume the unification mass scale as M9 =
M5 ∼ 1016 GeV and the horizontal mass scale equal to
Mh ∼ 1013 GeV. The several constants contained in (31)
are bTC = 1

16π2
26
3 , bQCD = 7

16π2 , γTC = 15
23 and γQCD = 4

7 .
We remember again that we assumed αk ∼ 1

45 , µTC =
250 GeV and µQCD = 250 MeV. The fermion masses turn
out to be functions of the parameter c(TC ,QCD)α(TC ,QCD).
For simplicity (as well as because this is a reasonable
choice) we will define cα = cTCαTC = cQCDαQCD = 0.5.

We display in Table 1 the fermionic mass spectrum
obtained in this model. Some of the values show a larger
disagreement in comparison to the experimental values,
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Table 1. Approximate values for quarks and leptons masses
according to the chosen values of couplings and strongly inter-
acting mass scales

mt 160.3 GeV mb 113 GeV mτ 131.2 GeV
mc 1.57 GeV ms 1.10 GeV mµ 1.30 GeV
mu 29.6 MeV md 15.6 MeV me 5.5 MeV

and others show a quite reasonable agreement if we con-
sider all the approximations that we have performed and
the fact that we have a totally dynamical scheme.

It is also impressive that B in (31), neglecting loga-
rithmic terms, is roughly given by B ∼ 14αhmt/π which
is of the order of 17 GeV. This is the expected value ac-
cording to the estimate of the previous section (see (30)).
In some way this is also expected in a mechanism where
one fermionic generation obtains a mass at one loop level
coupling to the next higher generation fermion (see, for
instance, [23]). The values of the u and e masses can easily
be lowered with a smaller value of µQCD. Of course, we are
also assuming a very particular form for the mass matrix
based in one particular family symmetry. Better knowledge
of the symmetry behind the mass matrix and a better un-
derstanding of the strong interaction group alignment will
certainly improve the comparison between data and the-
ory. The high value for the masses obtained for some of
the second generation fermions also come about from the
overestimation of the b and τ masses. The mass splitting
between the t and b quarks, which is far from the desirable
result, is a problem that has not been satisfactorily solved
in most of the dynamical models of mass generation up to
now. It is possible that an extra symmetry, preventing these
fermions to obtain masses at the leading order as suggested
by Raby [24] can easily be implemented in this model. We
will discuss these points again in the conclusions. Finally,
considering that we do not have any flavor changing neu-
tral current problems [26] because the interaction between
fermion and technifermions has been pushed to very high
energies, and that we assume only the existence of quite
expected symmetries (a gauge group containing TC and
the standard model and a horizontal symmetry) the model
does quite well in comparison with many other models.

5 Pseudo-Goldstone boson masses

Another problem in technicolor models is the proliferation
of pseudo-Goldstone bosons [2,3,25]. After the chiral sym-
metry breaking of the strongly interacting sector a large
number of Goldstone bosons are formed, and only few of
these degrees of freedom are absorbed by the weak inter-
action gauge bosons. The others may acquire small masses
resulting in light pseudo-Goldstone bosons, that have not
been observed experimentally. In our model these bosons
obtain masses that are large enough to have escaped de-
tection at the present accelerator energies but will show up
at the next generation of accelerators (for instance, LHC).
We can list the possible pseudo-Goldstone bosons accord-
ing to their different quantum numbers:

Colored pseudos. These carry color degrees of freedom and
can be divided into the 3 or 8 color representations. We
can indicate them by

Πa ∼ Q̄γ5λ
aQ.

Charged pseudos. These carry electric charge, and we can
take as one example the following current:

Π+ ∼ L̄γ5Q,

where Q(L) indicate the techniquark (technilepton) fields .
Neutral pseudos. These do not carry color or charge, and
one example is

Π0 ∼ N̄γ5N.

Following closely [25], the standard procedure to de-
termine the SU(3)QCD contribution to the mass (Mc) of
a colored pseudo-Goldstone boson gives

Mc ∼
(
C2(R)αc(µ)

αel

) 1
2 FΠ
fπ

35.5 MeV

∼ 170
√
C2(R) GeV ∼ O(300) GeV . (35)

While the electromagnetic contribution to the mass of
the charged pseudo-Goldstone bosons is estimated to be [25]

Mem ∼ Qps
FΠ
fπ

35.5 MeV ∼ Qps47 GeV ∼ O(50 GeV) ,

(36)
in the equations above we assumed that the technipion
and pion decay constants are given by FΠ ≈ 125 GeV and
fπ ≈ 95 MeV, Qps is the electric charge of the pseudo-
Goldstone boson, and C2(R) is the quadratic Casimir op-
erator in the representation R of the pseudo-Goldstone
boson under the TC group. There is not much to change
in these standard calculations, except that due to the par-
ticular form of the technifermion self-energy the techni-
fermion will acquire large current masses and subsequently
the pseudos-Goldstone bosons formed with these ones.

We know that any chiral currentΠf can be written as a
vacuum term mf 〈ψ̄fψf 〉 plus electroweak (color, . . . ) cor-
rections [27], where mf is the current mass of the fermion
ψf participating in the composition of the currentΠf , and
neglecting the electroweak corrections and using PCAC in
the case of QCD we obtain the Dashen relation,

m2
π ≈ mq〈q̄q〉

f2
π

, (37)

where 〈q̄q〉 is the quark condensate. Of course this relation
is valid for any chiral current, and in particular for the
technifermions we can write

M2
Π ≈ MTf

〈T̄fTf 〉
F 2
Π

, (38)

where MTf
is the technifermion current mass. In the usual

models (with the self-energy given by (3)) the techni-
fermions are massless or acquire very tiny masses, lead-
ing to negligible values for MΠ . In our model this is not
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TfTfTf Tf
αα9 9

SU(9)

Fig. 9. Diagram responsible for the technifermion mass gen-
eration

true. All technifermions acquire masses due to the self-
interaction with their own condensates through the inter-
change of SU(9) bosons.

There are several bosons in the SU(9) (and also in the
SU(3)H) theory connecting to technifermions and gener-
ating a current mass as is shown in Fig. 9.

A simple estimate, based on (4), of the contribution of
Fig. 9 to the technifermion masses gives

MTfSU(9)
� O(80–130) GeV . (39)

If we also include the contribution of the same diagram
where the exchanged boson is a horizontal SU(3)H boson
coupling technifermions of different generations, we must
add to the above value the following one:

MTfSU(3)H

� O(10–40) GeV . (40)

Therefore, we expect that the technifermion current
masses are at least of the order of MTf

≈ O(100) GeV.
Now, according to (38) and assuming 〈T̄fTf 〉 ∼ F 3

Π we
have the following estimate for the pseudo-Goldstone boson
masses:

MΠ � O(100) GeV . (41)

Note that in this calculation we have not considered
the QCD or electroweak corrections discussed previously.
Therefore, even if the pseudo-Goldstones bosons do not
acquire masses due to QCD or electroweak corrections they
will at least have masses of order of 100 GeV because of
the “current” technifermion masses obtained at the SU(9)
(or SU(3)H) level.

6 Conclusions

We have presented a technicolor theory based on the group
structure SU(9) × SU(3)H . The model is based on a par-
ticular ansatz for the TC and QCD self-energy. We argue
that our ansatz for QCD, in view of the many recent results
about its infrared behavior, is a plausible one, but even if
it is considered as an “ad hoc” choice for the self-energy
the main point is that it leads to a consistent model for
the fermion masses. This is the only new ingredient in the
model; all the others (unification of TC and the standard
model and the existence of a horizontal symmetry) are nat-
urally expected in the current scenario of particle physics.
One of the characteristics of the model is that the first
fermionic generation basically obtain masses due to the
interaction with the QCD condensate, whereas the third

generation obtains masses due to its coupling with the TC
condensate. The reason for this particular coupling and
for the alignment of the strong theory sectors generating
intermediate masses is provided by the SU(3)H horizon-
tal symmetry. Of course, our model is not successful in
predicting all the fermion masses, although it has a se-
ries of advantages. It does not need the presence of many
ETC boson masses to generate the different fermionic mass
scales. The ETC theory is replaced by unified and hori-
zontal symmetries. It has no flavor changing neutral cur-
rents or unwanted light pseudo-Goldstone bosons. There
are many points that still need some work in this line
of the model. The breaking of the SU(9) and horizontal
symmetries is not discussed and is just assumed to occur
near the Planck scale and possibly could be promoted by
fundamental scalar bosons.

The mass splitting in the third generation could be
produced with the introduction of a new symmetry. For
instance, if in the SU(9) breaking besides the standard-
model interactions and the TC one we leave an extra U(1),
maybe we could have quantum numbers such that only the
top quark would be allowed to couple to the TC condensate
at leading order. This possibility should be further studied
because it also may introduce large quantum corrections in
the model. If the unified group (SU(9) in our case) is not
broken by a dynamical mechanism, i.e. we do not need that
this group tumbles down to SU(4)TC ⊗SM, then we could
replace SU(4)TC by one smaller group (perhaps SU(2)TC)
which becomes stronger at the scale µ ≈ 250 GeV.

In this class of models we can choose different groups
containing TC and the standard model as well as differ-
ent horizontal symmetries with different textures for the
mass matrix. These will certainly modify the values of the
fermion masses that we have obtained. The alignment of
the strongly interacting sectors can be studied only with
many approximations, but it is quite possible that it gener-
ates more entries to the mass matrix than only the term B.
Another great advantage of the model is that it is quite in-
dependent of the very high energy interactions (like SU(9)
or SU(3)H), although the horizontal symmetry is funda-
mental to obtain the desired mass matrices, and we believe
that variations of this model can be formulated.
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